Class: XI
Date: 28.05.2024

Sub: MATHEMATICS (041)
Max Marks: 30
Time: 1 hr

General Instructions:

1. This question paper is divided in to 4 sections- A, B, C and D.
2. Section A comprises of 7 questions of 1 mark each.
3. Section B comprises of 3 questions of 2 marks each.
4. Section C comprises of 3 questions of 3 marks each.
5. Section D comprises of 2 case study-based questions
6. Internal choice has been provided for certain questions

Section - A

1 The number of non-empty subsets of a set, containing n elements, is
(a) n
(b) n^{2}
(c) $2^{\text {n }}$
(d) $2^{n}-1$

2 Which of the following statement is false?
(a) $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$
(b) $\mathrm{A}-\mathrm{B}=\mathrm{A}-(\mathrm{A} \cap \mathrm{B})$
(c) $\mathrm{A}-\mathrm{B}=\mathrm{A}-\mathrm{B}^{\prime}$
(d) $\mathrm{A}-\mathrm{B}=(\mathrm{A} \cup \mathrm{B})-\mathrm{B}$

3 Let R be a relation on N defined by $\mathrm{R}=\{(x, y): x+2 y=8, x, y \in N\}$. Then domain of R is
(a) $\{2,4,8\}$
(b) $\{2,4,6,8\}$
(c) $\{2,4,6\}$
(d) $\{1,2,3,4\}$

4 If $f(x)=x^{3}-\frac{1}{x^{3}}$, then $f(x)+f\left(\frac{1}{x}\right)$ is equal to
(a) $2 x^{3}$
(b) $\frac{2}{x^{3}}$
(c) 0
(d) 1

5 If $(\mathrm{x}+3,5)=(6,2 \mathrm{x}+\mathrm{y})$ then x, y is equals to
(a) $3,-1$
(b) 3,0
(c) $0,-1$
(d) None of these

6 Which of the following is not correct?
(a) $\sin \theta=-\frac{1}{5}$
(b) $\cos \theta=1$
(c) $\sec \theta=1 / 2$
(d) $\tan \theta=20$
$7 \quad$ Assertion (A): $\sin (-270)^{\circ}=1$.
Reason (R): $\sin \left(180^{\circ}+\theta\right)=\sin \theta$
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is NOT the correct explanation of A
(C) A is true but R is false
(D) A is false and R is True
(a) $2 \sqrt{ } 3$
(b) 4
(c) 1
(d) 0

Section - B

11 Draw appropriate Venn diagrams for each of the following:
(i) $\mathrm{A} \cup \mathrm{B}$
(ii) $A \cap B$
(iii) $(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$

If $\sin x=-\frac{5}{13}, x$ lies in III quadrant, find the values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$.
Let $\mathrm{A}=\{1,2,3,4,5,6\}$. Let R be a relation on A defined by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{b}$ is exactly divisible by a ; $\mathrm{a}, \mathrm{b} \in \mathrm{A}\}$, then
(i) Write R in roster form.
(ii) Find the domain of R.
(iii) Find the range of R.

If $A=\left\{x: x \in R, x\right.$ is the root of the equation $\left.x^{3}-x=0\right\}$, and $B=\left\{x: x \in R, x\right.$ is the root of $\left.x^{3}+2 x^{2}-x-2=0\right\}$
Then find the values of (i) $A \cup B$ (ii) $A \cap B$

Section - C

Prove that Prove: $\sqrt{2+\sqrt{2+2 \cos 4 x}}=2 \cos x$
Prove that if $\tan A=x \tan B$, then $\frac{\operatorname{Sin}(A-B)}{\operatorname{Sin}(A+B)}=\frac{x-1}{x+1}$

Section - D

Students of Indian Public School was conducting a quiz. The questions for round was as follows. The participants are required to finish the task in five minutes
(i) If $\mathrm{A}=\{-1,1\}$, then the find the number of elements in $\mathrm{A} x \mathrm{~A} x \mathrm{~A}$
(ii) Find the domain and range of the function

$$
\begin{equation*}
f(x)=\sqrt{25-x^{2}} \tag{2m}
\end{equation*}
$$

Salman and Amir are solving math question from
 chapter sets of class XI.
Given $U=\{x: x \leq 25, x \in N\}$,
$A=\{x: x \leq 15, x \in N\}$ and
$B=\{x: 10<x \leq 25, x \in N\}$.
In few questions they are not confident about their answer. Find the answer for the following questions and help Salman and Amir to verify their answers.

(i)	Find B - A	$(1 \mathrm{~m})$
(ii)	Find A $~ B ~ B ~$	$(1 \mathrm{~m})$
(iii)	Find (A - B)	$(2 \mathrm{~m})$
	$-\quad$ OR -	

- OR -

Find A' \cap B'

Unit Test - Model Paper (2024-2025)
Answer Key
Sub: MATHEMATICS (041)

Max Marks: 30
Time: 1 hr

1	(d) $2^{\mathrm{n}}-1$	
2	(c) $\mathrm{A}-\mathrm{B}=\mathrm{A}-\mathrm{B}^{\prime}$	
3	(c) $\{2,4,6\}$	
4	(c) 0	
5	(a) $3,-1$	
6	(c) $\sec \theta=1 / 2$	
7	(C) A is true but R is false	
8	$\begin{aligned} & \cos x=-12 / 13 \\ & \cos x=2 \cos ^{2} \frac{x}{2}-1 \\ & -\frac{12}{13}=2 \cos ^{2} \frac{x}{2}-1 \\ & \Rightarrow \cos ^{2} \frac{x}{2}=\frac{1}{26} \\ & \Rightarrow \cos \frac{x}{2}=-\frac{1}{\sqrt{26}} \\ & \text { Similarly } \sin \frac{x}{2}=\frac{5}{\sqrt{26}} \\ & \text { And } \tan \frac{x}{2}=-5 \\ & \hline \end{aligned}$	
9	```(i) \(\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6)\), \((4,4),(5,5),(6,6)\}\) (ii) Domain \(=\{1,2,3,4,5,6\}\) (iii) Range \(=\{1,2,3,4,5,6\}\)```	
10	$\begin{aligned} & A=\{0,-1,1\} \text { and } B=\{-2,-1,1\} \\ & A \cup B=\{0,-1,1,-2\} \\ & A \cap B=\{-1,1\} \end{aligned}$	
11	 $A \cup B$ $A \cap B$	

12	$\sqrt{2+\sqrt{2+2 \cos 4 x}}=\sqrt{2+\sqrt{2+2\left(2 \cos ^{2} 2 x-1\right)}}$ \{since, $\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1 \Rightarrow \cos 4 \mathrm{x}=2 \cos ^{2} 2 \mathrm{x}-1$ \} $\begin{aligned} & =\sqrt{2+\sqrt{2+4 \cos ^{2} 2 x-2}} \\ & =\sqrt{2+\sqrt{4 \cos ^{2} 2 x}} \\ & =\sqrt{2+2 \cos 2 x} \\ & =\sqrt{2+2\left(2 \cos ^{2} x-1\right)} \\ & =\sqrt{2+4 \cos ^{2} x-2} \\ & =\sqrt{4 \cos ^{2} x} \\ & =2 \cos x \\ & =\text { RHS } \end{aligned}$
13	$\begin{aligned} & \mathrm{LHS}=\frac{\sin (A-B)}{\sin (A+B)}=\frac{\sin A \cos B-\cos A \sin B}{\sin A \cos B+\cos A \sin B} \\ & =\frac{\tan A-\tan B}{\tan A+\tan B}=\frac{x \tan B-\tan B}{x \tan B+\tan B} \\ & =\frac{x-1}{x+1}=\mathrm{RHS} \end{aligned}$
14	(i) $\{(-1,-1,-1),(-1,-1,1),(-1,1,-1),(1,-1,-1),(-1,1,1),(1,1,-1),(1,-1,1),(1,1,1)\}$ (iii) $D_{f}=[-5,5] \quad R_{f}=[0,5]$
15	

